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a b s t r a c t 

A general problem, which may concern practical contexts of different nature, is to aggregate multi-experts rank- 
ings on a set of alternatives into a single fused ranking. Aggregation should also take into account the experts’ 
importance, which may not necessarily be the same for all of them. We synthetically define this context as semi- 
democratic. The main aim of the paper is the analysis of the possible semi-democratic paradigms that can be 
conceived when the experts’ importance is not the same: (i) the importance is described by means of a weighting 
vector; (ii) the importance is expressed by a weak order on the set of experts; (iii) the importance is described 
by a weak order on the set of experts with additional information on the ordinal proximities among them. The 
three paradigms can be applied in different decision-making situations, where some experts perform multiple 
assignments. In this paper various situations are discussed and analyzed in detail. A series of examples, in the 
field of interior design of a new car, will complement the description. 
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. Introduction 

A general problem, which may concern practical contexts of different
ature, is to aggregate multi-experts rankings on a set of alternatives into
 single fused ranking. 

Consider Table 1 , where m decision-making experts 1 formulate pref-
rence rankings among n alternatives of interest ( x 1 , x 2 , x 3 , x 4 , etc.).
ach ranking allows statements like x 1 ≻x 2 , x 1 ∼ x 2 , where symbols ≻
nd ∼ mean “strictly preferred to ” and “indifferent to ”, respectively.
he objective is to aggregate the m experts’ rankings into a single fused
ne, which should reflect them as much as possible, even in the pres-
nce of divergent preferences. For this reason, the fused ranking can
lso be defined as consensus or compromise ranking (see Cook [10] and
errera-Viedma et al. [25] ). Aggregation should also take into account

he experts’ importance, which is not necessarily equal for all of them. 
This decision-making problem is very diffused in a variety of real-

ife contexts, ranging from multi-criteria decision-aiding/making to so-
ial choice theory (see Arrow and Raynaud [3] and Greco et al. [23] ).
wo of the reasons for this diffusion are that (i) preference rankings are
robably the most intuitive and effective way to represent preference
udgments of alternatives, and (ii) they do not require a common refer-
nce scale – neither numeric, linguistic or ordinal – to be shared by the
nteracting agents (see Yager [45] and Chen et al. [8] ). 
∗ Corresponding author. 
E-mail addresses: fiorenzo.franceschini@polito.it (F. Franceschini), lapresta@eco.u

1 By a decision-making expert we will refer to an abstract entity able to pro- 
ide a decision: human beings, individual criteria in a multi-criteria decision 
rocess, software based intelligent agents on the Internet, etc. 
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The scientific literature includes a large number of aggregation mod-
ls, which have been analyzed extensively from the perspective of dif-
erent axioms and properties (see Arrow [2] , Fishburn [13] , Saari [36] ,
ook [10] and Nurmi [34] , among others). 

A long and lively debate has involved many scientists on the effects
hat the Arrow’s theorem can induce on practical decisions (see Arrow
2] , Arrow and Raynaud [3] , Franssen [19] , See and Lewis [38] , Keeney
28] , Ladha et al. [29] and McComb et al. [31] , among others). Some
esearchers have demonstrated the effectiveness of specific aggregation
odels, even though they do not satisfy some of the basic properties

elated to the Arrow’s theorem. For instance, Dym et al. [11] showed
hat, although the Borda aggregation model may not satisfy the Inde-
endence of Irrelevant Alternatives condition, this event rarely affect
he most preferred alternatives. They concluded that Arrow’s theorem
oses a considerable theoretical problem, but the practical implications
re not so worrisome. 

Additional research has been carried out by See and Lewis [38] ,
roposing a structured approach to avoid severe theoretical conflicts.
acobs et al. [27] recognized several additional issues related to the un-
ertainty, comparability and measurability concerned with aggregation
odels, both in the aggregation of preferences and performances. 

Franceschini and Maisano [16,17] addressed the problem of the co-
erence between decision agent preferences and collective preference

https://doi.org/10.1016/j.inffus.2019.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2019.04.003&domain=pdf
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Table 1 

Aggregation of multi-expert preference rankings into a single fused rank- 
ing. 

Inputs Output 

Experts Opinions Experts’ importance Social fused ranking 
e 1 x 2 ≻( x 1 ∼ x 3 ) ≻x 4 weights x 2 ≻( x 1 ∼ x 3 ) ≻x 4 
e 2 x 3 ≻x 2 ≻( x 1 ∼ x 4 ) hierarchy 
⋅⋅⋅ ⋅⋅⋅ hierarchy with ordinal 

proximity measures 
e m x 4 ≻x 1 ≻x 2 ≻x 3 
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anking. Other researchers focused their studies on proposing new ap-
roaches to manage linguistic distribution assessment in multi-attribute
roup decision making (see Keeney [28] , de Andrés et al. [1] , García-
apresta and Pérez-Román [22] , Yu et al. [46] , Zhang et al. [49] , Wu
t al. [43] and Ureña et al. [40] , among others). 

The literature is also rich in many practical applications in various
elds. As an example, a small review is shown in Table 2 (see Greco et al.
23] , Önüt et al. [35] , Yager [25], Griffin and Hauser [24] , Franceschini
t al. [14] , Colomer [9] , Saari [36] and Fishburn [13] ). 

The main aim of the paper is the analysis of the possible paradigms
hat can be conceived when the experts’ importance is not the same.

e synthetically define this context as semi-democratic. The term semi-
emocracy is used to refer to a context that shares both democratic
nd authoritarian features (see Møller and Skaaning [33] ). In this spe-
ific framework the term is used to highlight that all experts partici-
ate (democracy) to the collective fused ranking, although they may
ave a different weight in the decision (semi or partial democracy). The
odelling of these decision-making problems has only been partially

xplored in the literature. The complexity of the problem is due to the
ifficulty of modeling the different degree of importance of the decision
xperts. 

In some cases the numerical weight associated with each single ex-
ert is known, while in other cases only the expert hierarchy (but not
heir relative weights) is known. In some other situations it is possible to
now, in addition to the expert hierarchy, also the proximities between
he hierarchy levels. 

Most of the papers in the literature focus their attention on decision
roblems where the weights associated with the individual experts are
nown (see Arrow and Raynaud [3] and Greco et al. [23] ); other papers
oncentrate on the technique for determining these weights (see Yue
47] , Dubois et al. [12] , Zhang and Guo [48] , Mishra and Rani [32] and
u et al. [26] , among others). However, when we move on to less struc-

ured problems, where the hierarchy level between decision makers is
xpressed by more nuanced information i.e., only the hierarchical level
f experts is known) or by a hierarchical proximity (i.e., only the hier-
rchical proximity of experts is known), the literature offers only few
pproaches for tackling this problem (see Yager [45] ). 

By this paper we wish to provide a structured conceptual frame-
ork on the state of the art and on the potential future research ar-
as for decision-making problems in semi-democratic contexts. In this
anuscript various situations will be discussed and analyzed in detail. A

eries of examples, inspired by a real application in the field of interior
esign of a new car, will complement the description. 

The rest of the paper is organized as follows. Section 2 introduces
orda scores and ordinal proximity measures. Section 3 includes the
aradigms considered in the paper to categorize semi-democratic con-
exts. Section 4 contains a case study. Section 5 includes some conclud-
ng remarks. 

. Preliminaries 

Let 𝐸 = { 𝑒 1 , … , 𝑒 𝑚 } be a set of experts. With W ( E ) we denote the set
f weak orders (or complete preorders ) on E . Given S ∈W ( E ), with ≻ and
282 
we denote the asymmetric and the symmetric parts of S , respectively.
iven a set Y , with # 𝑌 we denote the cardinality of Y . 

efinition 1. Given S ∈W ( E ), let 𝐵 ∶ 𝐸 ⟶{0 , 0 . 5 , 1 , … , 𝑚 − 1 . 5 , 𝑚 − 1}
e the mapping that assigns the Borda score of each expert e i ∈E , defined
s 

( 𝑒 𝑖 ) = # 
{
𝑒 𝑗 ∈ 𝐸 ∣ 𝑒 𝑖 ≻ 𝑒 𝑗 

}
+ 

1 
2 
# 
{
𝑒 𝑗 ∈ ( 𝐸 ⧵ { 𝑒 𝑖 }) ∣ 𝑒 𝑗 ∼ 𝑒 𝑖 

}
. (1)

xample 1. Consider 𝑆 ∈ 𝑊 ({ 𝑒 1 , … , 𝑒 5 }) given by 

𝑆 

𝑒 1 
 2 𝑒 3 
 4 𝑒 5 

.e., e 1 ≻( e 2 ∼ e 3 ) ≻( e 4 ∼ e 5 ). 
Then, we have 𝐵( 𝑒 1 ) = 4 , 𝐵( 𝑒 2 ) = 𝐵( 𝑒 3 ) = 2 . 5 and 𝐵( 𝑒 4 ) = 𝐵( 𝑒 5 ) =

 . 5 . 

We now recall the notion of ordinal proximity measure, introduced
y García-Lapresta and Pérez-Román [22] . An ordinal proximity mea-
ure is a mapping that assigns an ordinal degree of proximity to each pair
f linguistic terms of an ordered qualitative scale ( OQS )  = { 𝑙 1 , … , 𝑙 𝑔 } ,
ith l 1 < ⋅⋅⋅< l g and g ≥ 3. The mentioned ordinal degrees of proximity
elong to a linear order Δ = { 𝛿1 , … , 𝛿ℎ } , with 𝛿1 ≻⋅⋅⋅≻𝛿h and h ≥ 3, be-
ng 𝛿1 and 𝛿h the maximum and minimum degrees of proximity, respec-
ively. It is important noticing that the elements of Δ are not numbers.
n fact, they are only abstract objects representing different degrees of
roximity. 

efinition 2. ( [22] ) An ordinal proximity measure ( OPM ) on  with val-

es in Δ is a mapping 𝜋 ∶  

2 ⟶ Δ, where 𝜋( 𝑙 𝑟 , 𝑙 𝑠 ) = 𝜋𝑟𝑠 represents the
egree of proximity between l r and l s , satisfying the following condi-
ions: 

1. Exhaustiveness : For every 𝛿 ∈Δ, there exist 𝑙 𝑟 , 𝑙 𝑠 ∈  such that 𝛿 =
𝜋𝑟𝑠 . 

2. Symmetry : 𝜋𝑠𝑟 = 𝜋𝑟𝑠 , for all 𝑟, 𝑠 ∈ {1 , … , 𝑔} . 
3. Maximum proximity : 𝜋𝑟𝑠 = 𝛿1 ⇔ 𝑟 = 𝑠, for all 𝑟, 𝑠 ∈ {1 , … , 𝑔} . 
4. Monotonicity : 𝜋rs ≻𝜋rt and 𝜋st ≻𝜋rt , for all 𝑟, 𝑠, 𝑡 ∈ {1 , … , 𝑔} such that

r < s < t . 

Every OPM 𝜋 ∶  

2 ⟶ Δ can be represented by a g × g symmetric
atrix with coefficients in Δ, where the elements in the main diagonal

re 𝜋𝑟𝑟 = 𝛿1 , 𝑟 = 1 , … , 𝑔: 

 

 

 

 

 

 

 

𝜋11 ⋯ 𝜋1 𝑠 ⋯ 𝜋1 𝑔 
⋯ ⋯ ⋯ ⋯ ⋯ 

𝜋𝑟 1 ⋯ 𝜋𝑟𝑠 ⋯ 𝜋𝑟𝑔 
⋯ ⋯ ⋯ ⋯ ⋯ 

𝜋𝑔1 ⋯ 𝜋𝑔𝑠 ⋯ 𝜋𝑔𝑔 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
. 

his matrix is called the proximity matrix associated with 𝜋. 
Some procedures for generating OPMs in an OQS are introduced by

arcía-Lapresta et al. [21] . 

. Paradigms to categorize semi-democratic contexts 

Let 𝐸 = { 𝑒 1 , … , 𝑒 𝑚 } be a set of experts that show their preferences
n a set of alternatives 𝑋 = { 𝑥 1 , … , 𝑥 𝑛 } through a profile of weak orders
( 𝑅 1 , … , 𝑅 𝑚 ) ∈ 𝑊 ( 𝑋) 𝑚 . 

The aim is to generate a social weak order R 

∗ ∈W ( X ) representing
ndividual preferences taking into account that the importance of ex-
erts may be different. 

According to the content of Table 3 , we can identify three potential
aradigms to categorize the concept of semi-democratic context for a
et of experts: 

1. A numerical weight w i ∈ [0, 1] is assigned to each expert e i ∈E . 
2. The set of experts is categorized by a hierarchy, i.e., a weak order

on the set of experts, S ∈W ( E ). 
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Table 2 

Examples of practical applications of the problem of interest. 

Field Agents Alternatives Problem description 

Multicriteria decision 
aiding/making 

Qualitative/quantitative criteria Alternative locations Determination of the best location where to install a new manufacturing 
plant on the basis of several criteria such as road/railway infrastructure, 
electrical supply, labour cost, etc. (see Greco et al. [23] ) 

Multicriteria decision 
aiding/making 

Qualitative/quantitative criteria Technology selection Machine tool selection (see Önüt et al. [35] ) 

Internet Different types of information 
concerning the user 

Data displayed on Internet sites Intelligent customization of data displayed on Internet sites, based on 
several types of information such as user’s country, websites visited 
previously, apps downloaded, etc. (see Yager [44] ) 

Quality management Questionnaire/interview 

respondents 
Customer requirements Synthesis of customer requirements, which are evaluated by a sample of 

questionnaire/interview respondents (see Griffin and Hauser [24] and 
Franceschini et al. [14] ) 

Voting theory Voters Candidates in an election Searching a reasonable mechanism for aggregating the opinions expressed 
by several voters on the candidates, in order to determine a winner or to 
rank all candidates in order of preference (see Colomer [9] , Fishburn [13] 
and Saari [36] ) 

Table 3 

Aggregation of multi-expert preference rankings into a single fused 
ranking. 

Inputs Output 

Experts Opinions Experts’ importance Social fused ranking 
e 1 R 1 ∈W ( X ) 𝑤 1 , … , 𝑤 𝑚 ∈ [0 , 1] R ∗ ∈W ( X ) 
e 2 R 2 ∈W ( X ) S ∈W ( E ) 
⋅⋅⋅ ⋅⋅⋅ 𝑣 1 , … , 𝑣 𝑚 ∈  

e m R m ∈W ( X ) 
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3. The set of experts is categorized by a graduated hierarchy within an
OQS equipped with an OPM, 𝑣 1 , … , 𝑣 𝑚 ∈  . 

.1. Assigning a numerical weight to each expert 

In some contexts experts may have recognized abilities and at-
ributes and/or privileged positions of power, represented by weights
see Dubois et al. [12] , Brans and Mareschal [6] and Greco et al. [23] ).

The definition of the experts’ weights can be a very delicate issue. In
ome settings, the weight of an expert may be well defined; for example,
he Gross National Product (GNP) or population size of a country repre-
ented by the member on an international committee can immediately
e used as weights. In many other situations the definition of the weights
s controversial, because there are no indisputable criteria that can be
sed for this operation. Weights are often imposed by decision-makers,
ccording to political strategies (see Wang et al. [42] ). For example,
he scientific committee of a competitive examination for promotion of
aculty members may decide that scientific publications will account
or 30% of the total performance, the international projects for 25%,
he teaching activity for 35%, etc. 

The literature includes several techniques for the quantification of
eights. For example, the AHP procedure uses the eigenvector method

o derive a weight vector relating to experts (see Saaty [37] ), while
he method proposed by Martel and Ben Khélifa [30] determines the
o-called “relative importance coefficient ” of each expert, based on the
ombination of subjective and objective components. 

More specifically, the importance of experts is directly reported by
eans of a weighting vector 𝒘 = ( 𝑤 1 , … , 𝑤 𝑚 ) ∈ [0 , 1] 𝑚 such that 𝑤 1 +
 + 𝑤 𝑚 = 1 and 100 𝑤 𝑖 ∈ ℕ , for every 𝑖 ∈ {1 , …𝑚 } . 
The weighting scheme should follow the replication proposal given

y García-Lapresta and González del Pozo [20] : the weak orders asso-
iated with the experts are replicated according to the corresponding
ercentages, 100 w 1 , … , 100 w m 

. In practice, it should be convenient
o calculate the greatest common divisor (gcd) of percentages associ-
ted with the weights, and divide each percentage by the gcd. Then, the
283 
inimum number of replications of each profile is obtained: 

 𝑖 = 

100 𝑤 𝑖 

gcd {100 𝑤 1 , … , 100 𝑤 𝑚 } 
, 𝑖 ∈ {1 , … , 𝑚 } . 

f ( 𝑡 1 , … , 𝑡 𝑚 ) ∉ ℕ 

𝑚 , then these numbers have to be properly rounded. 
Thus, the experts’ weak orders of the original profile ( 𝑅 1 , … , 𝑅 𝑚 ) ∈

 ( 𝑋) 𝑚 are replicated accordingly: 

 

 

 

 

 

𝑡 1 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 1 , … , 𝑅 1 , … , 

𝑡 𝑚 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 𝑚 , … , 𝑅 𝑚 

⎞ ⎟ ⎟ ⎟ ⎠ 
∈ 𝑊 ( 𝑋) 𝑡 1 + ⋯ + 𝑡 𝑚 . 

In some settings, weights are not available or cannot be defined on
ardinal scales. In these cases, the importance hierarchy of agents may
e expressed by a weak order (see Yager [45] ). When the expert impor-
ance prioritization is doubtful, the formulation of rankings is certainly
impler and more intuitive than the formulation of weights (see Chen
t al. [8] ). 

.2. Hierarchy of experts 

In this subsection we will focus on a specific aggregation problem
n which the experts’ importance is expressed through a weak order.
his decision-making context can be denominated as “ordinal semi-
emocratic ”; the adjective “semi-democratic ” indicates that agents do
ot necessarily have the same importance, while “ordinal ” indicates that
heir rank is defined by a crude ranking. This makes the set of the pos-
ible solutions relatively wide, since they may range between the two
xtreme situations of (i) full dictatorship – in which the resulting fused
anking coincides with the preference ranking by the most important
gent (dictator) – and (ii) full democracy – where the agents’ preference
ankings are considered as equi-important. 

In spite of its practicality and adaptability to a large number of real
ontexts, this specific decision-making problem is almost completely ig-
ored in the literature. Over ten years ago, Yager [45] proposed an algo-
ithm (hereafter abbreviated as YA, which stands for Yager’s Algorithm)
o address this problem in a relatively simple and fast way. Unfortu-
ately, this algorithm has two important limitations: (i) the resulting
used ranking may sometimes not reflect the preference ranking for the
ajority of experts (see Wang [41] ) and (ii) it is only applicable to lin-

ar orders, without incomparabilities and omissions of the alternatives
f interest. The paper of Franceschini et al. [18] enhances the YA in
rder to overcome its limitations and adapt to less stringent preference
ankings. 

In a formal way, the importance of experts is represented by means
f a weak order S ∈W ( E ). In this situation we can operate in two ways:

1. Direct method: adopting the YA algorithm or similar variants (Yager
[45] , Franceschini et al. [18] ; see Section 4 ). 
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Fig. 1. Ordinal proximity measure with associated matrix A 342 . 

Table 4 

Absolute part of the score S ( e i ). 

v i 𝜋( v i , l 1 ) 𝜋( v i , l g ) ℎ + 𝜌( 𝜋( 𝑣 𝑖 , 𝑙 1 )) − 𝜌( 𝜋( 𝑣 𝑖 , 𝑙 𝑔 )) 

l 1 𝛿1 𝛿7 7 + 1 − 7 = 1 
l 2 𝛿3 𝛿5 7 + 3 − 5 = 4 
l 3 𝛿6 𝛿2 7 + 6 − 2 = 11 
l 4 𝛿7 𝛿1 7 + 7 − 1 = 13 
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2 The subindices 342 of the matrix A 342 correspond to the subindices of the 𝛿’s 
appearing in the coefficients just over the main diagonal. We follow the same 
pattern in subsequent matrices. 
2. Indirect method: we can generate an “artificial ” weighting vector
based, for example, on the Borda scores obtained by the experts
( Definition 1 ), 

𝑤 𝑖 = 

𝐵( 𝑒 𝑖 ) 
𝐵( 𝑒 1 ) + ⋯ + 𝐵( 𝑒 𝑚 ) 

, 𝑖 ∈ {1 , … , 𝑚 } , 

going back to the case analyzed in Subs ection 3.1 . It can be noticed
that Sen [39] has already considered the Borda scores as weights of
the objects in a ranking. 

In the Example 1 , the following weighting vector 𝒘 =
0 . 4 , 0 . 25 , 0 . 25 , 0 . 05 , 0 . 05) is obtained. 

Since gcd {100 𝑤 1 , … , 100 𝑤 5 } = gcd {40 , 25 , 25 , 5 , 5} = 5 , then R 1 , R 2 ,
 3 , R 4 and R 5 should be replicated 40∕5 = 8 , 25∕5 = 5 , 25∕5 = 5 , 5∕5 =
 and 5∕5 = 1 times, respectively: 

 

 

 

 

 

8 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 1 , … , 𝑅 1 , 

5 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 2 , … , 𝑅 2 , 

5 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 3 , … , 𝑅 3 , 𝑅 4 , 𝑅 5 

⎞ ⎟ ⎟ ⎟ ⎠ 
∈ 𝑊 ( 𝑋) 20 . 

An equivalent approach consists of directly calculate the number of
eplications avoiding to obtain the weighting vector and the correspond-
ng rounding problems. 

Since 𝐵 ∶ 𝐸 ⟶ {0 , 0 . 5 , 1 , … , 𝑚 − 1 . 5 , 𝑚 − 1} , i.e., B ( e i ) could be not
nteger, consider 

 𝑖 = 

2 𝐵( 𝑒 𝑖 ) 
gcd {2 𝐵( 𝑒 1 ) , … , 2 𝐵( 𝑒 𝑚 )} 

, 𝑖 ∈ {1 , … , 𝑚 } . (2)

So, in Example 1 we directly obtain 𝑡 1 = 8 , 𝑡 2 = 𝑡 3 = 5 and 𝑡 4 = 𝑡 5 =
 . 

Notice that the importance of expert e 1 is 8∕5 = 1 . 6 times the impor-
ance of experts e 2 and e 3 ; the importance of expert e 1 is 8∕1 = 8 times
he importance of experts e 4 and e 5 ; and the importance of experts e 2 
nd e 3 is 5∕1 = 5 times the importance of experts e 4 and e 5 . 

.3. Ordinal proximity measures 

This subsection introduces the third paradigm. In this case the ex-
erts’ importance is expressed again through a ranking, with an addi-
ional measure of the proximity (proximity graduation) of the ordinal
emi-democratic hierarchy. 

A decision-maker evaluates the experts in an OQS  = { 𝑙 1 , … , 𝑙 𝑔 } 
quipped with an OPM 𝜋 ∶  

2 ⟶ Δ = { 𝛿1 , … , 𝛿ℎ } , by assigning a lin-
uistic term 𝑣 𝑖 ∈  to each expert e i ∈ E . Let 𝜌 ∶ Δ ⟶ ℕ be the map-
ing defined as 𝜌( 𝛿𝑟 ) = 𝑟 . 

A score is given to each expert e i ∈ E through the mapping 𝑆 ∶ 𝐸 ⟶
 defined as 

( 𝑒 𝑖 ) = ℎ + 𝜌( 𝜋( 𝑣 𝑖 , 𝑙 1 )) − 𝜌( 𝜋( 𝑣 𝑖 , 𝑙 𝑔 )) + 

∑
𝑣 𝑖 >𝑣 𝑗 

𝜌( 𝜋( 𝑣 𝑖 , 𝑣 𝑗 )) + 

1 
2 

∑
𝑣 𝑖 = 𝑣 𝑗 
𝑖 ≠𝑗 

𝜌( 𝜋( 𝑣 𝑖 , 𝑣 𝑗 ))

(3)

Since S ( e i ) could be not integer, following the same pattern that in
2) , consider 

 𝑖 = 

2 𝑆( 𝑒 𝑖 ) 
gcd {2 𝑆( 𝑒 1 ) , … , 2 𝑆( 𝑒 𝑚 )} 

, 𝑖 ∈ {1 , … , 𝑚 } . 

The meaning of S ( e i ) in (3) is explained as follows. In order to all
he scores 𝑆( 𝑒 1 ) , … , 𝑆( 𝑒 𝑚 ) be positive, h points are initially assigned to
ach expert, just the number of ordinal degrees of proximity; 𝜋( v i , l 1 )
easures the proximity between the assessment of e i and the lowest pos-

ible assessment, l 1 (the lower, the better); 𝜋( v i , l g ) measures the prox-
mity between the assessment of e i and the highest possible assessment,
 g (now the higher, the better). Consequently, 𝜌( 𝜋( 𝑣 𝑖 , 𝑙 1 )) − 𝜌( 𝜋( 𝑣 𝑖 , 𝑙 𝑔 )) is
he number of steps for going from 𝜋( v i , l 1 ) to 𝜋( v i , l g ), being this dif-
erence positive whenever the assessment of e i is closer to l g than to l 1 ,
nd negative in the opposite case. 
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Notice that ℎ + 𝜌( 𝜋( 𝑣 𝑖 , 𝑙 1 )) − 𝜌( 𝜋( 𝑣 𝑖 , 𝑙 𝑔 )) can be considered as the ab-

olute part of the score S ( e i ), in the sense that it does not depend on the
ssessments obtained for other experts. 

However, the second part of S ( e i ), 

∑
 𝑖 >𝑣 𝑗 

𝜌( 𝜋( 𝑣 𝑖 , 𝑣 𝑗 )) + 

1 
2 

∑
𝑣 𝑖 = 𝑣 𝑗 
𝑖 ≠𝑗 

𝜌( 𝜋( 𝑣 𝑖 , 𝑣 𝑗 )) , 

an be considered as the relative part of the score S ( e i ), since it depends
f the assessments obtained for other experts. 

With 
∑

𝑣 𝑖 >𝑣 𝑗 
𝜌( 𝜋( 𝑣 𝑖 , 𝑣 𝑗 )) we take into account the ordinal degrees of

roximity between the assessment of e i and those obtained by the ex-
erts that have been evaluated worse than e i . Finally, 

∑
𝑣 𝑖 = 𝑣 𝑗 
𝑖 ≠𝑗 

𝜌( 𝜋( 𝑣 𝑖 , 𝑣 𝑗 )) 

s just the number of experts that share with e i the same assessment. 
Obviously, S ( e i ) > S ( e j ) ⇔ v i > v j . 

emark 1. The maximum score that an expert e i can reach is obtained
hen e i has the highest assessment, l g , and the rest of experts have the

owest assessment, l 1 ; in this case, 𝑆( 𝑒 𝑖 ) = ℎ + ℎ − 1 + ( 𝑚 − 1) ℎ = ( 𝑚 +
) ℎ − 1 . Conversely, the minimum score that an expert e i can reach is
btained when e i has the lowest assessment, l 1 , and the rest of experts
ave the highest assessment, l g ; now, 𝑆( 𝑒 𝑖 ) = ℎ + 1 − ℎ = 1 . Thus, 1 ≤
( 𝑒 𝑖 ) ≤ ( 𝑚 + 1) ℎ − 1 . 

emark 2. The relative part of the score S ( e i ) depends on the modifi-
ations on the set of experts: 

1. Consider a new expert 𝑒 𝑚 +1 . Let 𝑆 ′ ∶ 𝐸 ∪ { 𝑒 𝑚 +1 } ⟶ ℝ be the new
mapping. Then, 𝑣 𝑖 ≥ 𝑣 𝑚 +1 ⇒ 𝑆 ′( 𝑒 𝑖 ) > 𝑆( 𝑒 𝑖 ) . 

2. If an expert e k is removed, let 𝑆 ′ ∶ 𝐸 ⧵ { 𝑒 𝑘 } ⟶ ℝ be the new map-
ping. Then, v i ≥ v k ⇒ S ′ ( e i ) < S ( e i ). 

xample 2. Let  = { 𝑙 1 , 𝑙 2 , 𝑙 3 , 𝑙 4 } be the OQS equipped with the OPM
ith associated proximity matrix 2 

 342 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝛿1 𝛿3 𝛿6 𝛿7 
𝛿1 𝛿4 𝛿5 

𝛿1 𝛿2 
𝛿1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
hat can be visualized in Fig. 1 . 

The meaning of the proximity matrix A 342 is that the or-
inal degrees of proximity between the linguistic terms of the
QS  are 𝜋( 𝑙 3 , 𝑙 4 ) = 𝛿2 ≻ 𝜋( 𝑙 1 , 𝑙 2 ) = 𝛿3 ≻ 𝜋( 𝑙 2 , 𝑙 3 ) = 𝛿4 ≻ 𝜋( 𝑙 2 , 𝑙 4 ) = 𝛿5 ≻

( 𝑙 1 , 𝑙 3 ) = 𝛿6 ≻ 𝜋( 𝑙 1 , 𝑙 4 ) = 𝛿7 . 
The absolute part of the score S ( e i ) is included in Table 4 for the

our possible assessments that experts can obtain. 
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l1 l2 l3 l4

Fig. 2. Ordinal proximity measure with associated matrix A 232 . 
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xample 3. Let  = { 𝑙 1 , 𝑙 2 , 𝑙 3 , 𝑙 4 } be the OQS equipped with the OPM
ith associated proximity matrix 

 232 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝛿1 𝛿2 𝛿4 𝛿5 
𝛿1 𝛿3 𝛿4 

𝛿1 𝛿2 
𝛿1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
hat can be visualized in Fig. 2 . 

We consider Example 1 , where e 1 ≻( e 2 ∼ e 3 ) ≻( e 4 ∼ e 5 ), and we take
nto account the four possible experts’ evaluations in  = { 𝑙 1 , 𝑙 2 , 𝑙 3 , 𝑙 4 } 
ompatible with the mentioned experts’ importance ranking: 

1. 𝑣 1 = 𝑙 4 , 𝑣 2 = 𝑣 3 = 𝑙 3 and 𝑣 4 = 𝑣 5 = 𝑙 2 . 
After applying (3) , we have 𝑆( 𝑒 1 ) = 21 , 𝑆( 𝑒 2 ) = 𝑆( 𝑒 3 ) = 13 . 5 and
𝑆( 𝑒 4 ) = 𝑆( 𝑒 5 ) = 3 . 5 . Then, 𝑡 1 = 42 , 𝑡 2 = 𝑡 3 = 27 and 𝑡 4 = 𝑡 5 = 7 .
Thus, R 1 , R 2 , R 3 , R 4 and R 5 should be replicated 42, 27, 27, 7
and 7 times, respectively: 

⎛ ⎜ ⎜ ⎜ ⎝ 

42 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 1 , … , 𝑅 1 , 

27 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 2 , … , 𝑅 2 , 

27 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 3 , … , 𝑅 3 , 

7 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 4 , … , 𝑅 4 , 

7 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 5 , … , 𝑅 5 

⎞ ⎟ ⎟ ⎟ ⎠ 
∈ 𝑊 ( 𝑋) 110 . 

Then, the importance of expert e 1 is 42∕27 = 1 . 55 times the impor-
tance of experts e 2 and e 3 ; the importance of expert e 1 is 42∕7 = 6 
times the importance of experts e 4 and e 5 ; and the importance of
experts e 2 and e 3 is 27∕7 = 3 . 86 times the importance of experts e 4 
and e 5 . 

2. 𝑣 1 = 𝑙 4 , 𝑣 2 = 𝑣 3 = 𝑙 3 and 𝑣 4 = 𝑣 5 = 𝑙 1 . 
After applying (3) , we have 𝑆( 𝑒 1 ) = 23 , 𝑆( 𝑒 2 ) = 𝑆( 𝑒 3 ) = 15 . 5 and
𝑆( 𝑒 4 ) = 𝑆( 𝑒 5 ) = 1 . 5 . Then, 𝑡 1 = 46 , 𝑡 2 = 𝑡 3 = 31 and 𝑡 4 = 𝑡 5 = 3 .
Thus, R 1 , R 2 , R 3 , R 4 and R 5 should be replicated 46, 31, 31, 3
and 3 times, respectively: 

⎛ ⎜ ⎜ ⎜ ⎝ 

46 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 1 , … , 𝑅 1 , 

31 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 2 , … , 𝑅 2 , 

31 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 3 , … , 𝑅 3 , 

3 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 4 , … , 𝑅 4 , 

3 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 5 , … , 𝑅 5 

⎞ ⎟ ⎟ ⎟ ⎠ 
∈ 𝑊 ( 𝑋) 114 . 

Then, the importance of expert e 1 is 46∕31 = 1 . 48 times the impor-
tance of experts e 2 and e 3 ; the importance of expert e 1 is 46∕3 =
15 . 33 times the importance of experts e 4 and e 5 ; and the importance
of experts e 2 and e 3 is 31∕3 = 10 . 33 times the importance of experts
e 4 and e 5 . 

3. 𝑣 1 = 𝑙 4 , 𝑣 2 = 𝑣 3 = 𝑙 2 and 𝑣 4 = 𝑣 5 = 𝑙 1 . 
After applying (3) , we have 𝑆( 𝑒 1 ) = 27 , 𝑆( 𝑒 2 ) = 𝑆( 𝑒 3 ) = 7 . 5 and
𝑆( 𝑒 4 ) = 𝑆( 𝑒 5 ) = 1 . 5 . Now, 𝑡 1 = 18 , 𝑡 2 = 𝑡 3 = 5 and 𝑡 4 = 𝑡 5 = 1 . Thus,
R 1 , R 2 , R 3 , R 4 and R 5 should be replicated 18, 5, 5, 1 and 1 times,
respectively: 

⎛ ⎜ ⎜ ⎜ ⎝ 

18 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 1 , … , 𝑅 1 , 

5 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 2 , … , 𝑅 2 , 

5 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 3 , … , 𝑅 3 , 𝑅 4 , 𝑅 5 

⎞ ⎟ ⎟ ⎟ ⎠ 
∈ 𝑊 ( 𝑋) 30 . 

Then, the importance of expert e 1 is 18∕5 = 3 . 6 times the importance
of experts e 2 and e 3 ; the importance of expert e 1 is 18∕1 = 18 times
the importance of experts e 4 and e 5 ; and the importance of experts
e 2 and e 3 is 5∕1 = 5 times the importance of experts e 4 and e 5 . 

4. 𝑣 1 = 𝑙 3 , 𝑣 2 = 𝑣 3 = 𝑙 2 and 𝑣 4 = 𝑣 5 = 𝑙 1 . 
After applying (3) , we have 𝑆( 𝑒 1 ) = 21 , 𝑆( 𝑒 2 ) = 𝑆( 𝑒 3 ) = 7 . 5 and
𝑆( 𝑒 4 ) = 𝑆( 𝑒 5 ) = 1 . 5 . Now, 𝑡 1 = 14 , 𝑡 2 = 𝑡 3 = 5 and 𝑡 4 = 𝑡 5 = 1 . Thus,
R 1 , R 2 , R 3 , R 4 and R 5 should be replicated 14, 5, 5, 1 and 1 times,
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respectively: 

⎛ ⎜ ⎜ ⎜ ⎝ 

14 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 1 , … , 𝑅 1 , 

5 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 2 , … , 𝑅 2 , 

5 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 3 , … , 𝑅 3 , 𝑅 4 , 𝑅 5 

⎞ ⎟ ⎟ ⎟ ⎠ 
∈ 𝑊 ( 𝑋) 26 . 

Then, the importance of expert e 1 is 14∕5 = 2 . 8 times the importance
of experts e 2 and e 3 ; the importance of expert e 1 is 14∕1 = 14 times
the importance of experts e 4 and e 5 ; and the importance of experts
e 2 and e 3 is 5∕1 = 5 times the importance of experts e 4 and e 5 . 

emark 3. Notice that in the procedure of Subsection 3.2 , the number
f replications is univocally determined by Eq. (2) . However, in the pro-
edure of Subsection 3.3 the number of replications can vary depending
n the OPM considered on the OQS and the evaluations obtained by
he experts. For instance, in Example 3 , the OQS has 4 linguistic terms
nd it can be equipped with 51 different OPMs. Additionally, experts
an be evaluated in 4 different ways compatible with the weak order
 1 ≻( e 2 ∼ e 3 ) ≻( e 4 ∼ e 5 ). Thus, 204 kinds of replications are possible. 

.4. Aggregation 

In the paradigms presented in Section 3 , a profile of weak orders
n the set of alternatives 𝑋 = { 𝑥 1 , … , 𝑥 𝑛 } is obtained. To generate a
ollective weak order on X , it is necessary to consider an aggregation
ule. A prominent class of aggregation rules is the family of scoring rules
see Chebotarev and Shamis [7] ) and, particularly, the Borda rule [5] . 

Initially, the Borda rule was devised for linear orders (indifferences
re not allowed). There are several ways to adjust the Borda rule to weak
rders (see Black [4] ). We follow the pattern of Eq. (1) . 

The Borda score of each alternative x i ∈X is defined for every indi-
idual weak order R k ∈W ( X ) of the profile ( 𝑅 1 , … , 𝑅 𝑚 ) ∈ 𝑊 ( 𝑋) 𝑚 . 

Let 𝐵 𝑘 ∶ 𝑋 ⟶ {0 , 0 . 5 , 1 , … , 𝑛 − 1 . 5 , 𝑛 − 1} be the mapping that as-
igns the Borda score of each alternative x i ∈X for R k ∈W ( X ), which is
efined as 

 𝑘 ( 𝑥 𝑖 ) = # 
{
𝑥 𝑗 ∈ 𝑋 ∣ 𝑥 𝑖 ≻𝑘 𝑥 𝑗 

}
+ 

1 
2 
# 
{
𝑥 𝑗 ∈ ( 𝑋 ⧵ { 𝑥 𝑖 }) ∣ 𝑥 𝑗 ∼𝑘 𝑥 𝑖 

}
. 

Then, a total score is obtained for each alternative, 

 

∗ ( 𝑥 𝑖 ) = 

𝑚 ∑
𝑘 =1 

𝐵 𝑘 ( 𝑥 𝑖 ) , 

nd the collective weak order on X generated by the Borda rule, R 

∗ , is
efined as 

 𝑖 𝑅 

∗ 𝑥 𝑗 ⇔ 𝐵 ∗ ( 𝑥 𝑖 ) ≥ 𝐵 ∗ ( 𝑥 𝑗 ) , 

or all x i , x j ∈X . 

. Case study 

We propose an application of the above concepts in the field of inte-
ior design of a new car. 

A set of interior settings of a new car are provided to a customer
anel selected on the base of the fidelity to the brand and on the
evel of education. A sample of ten customers/experts 𝐸 = { 𝑒 1 , … , 𝑒 10 }
ere encouraged to analyze five interior designs for a new car, 𝑋 =
 𝑥 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 , 𝑥 5 } . 

Customers were divided into four classes of importance within the
QS  = { 𝑙 1 , 𝑙 2 , 𝑙 3 , 𝑙 4 } , namely 𝑙 1 = D, 𝑙 2 = C, 𝑙 3 = B and 𝑙 4 = A, based
n the two analysis dimensions: (i) the “fidelity to the brand ” (num-
er of years) and (ii) the “level of education ” (e.g., bachelor, master,
octorate). 

These two dimensions may significantly influence the accuracy of the
esponse while being relatively easy to evaluate. The two dimensions
an be described through the two-dimensional map in Fig. 3 . 

The most important customers (in class A) are those with relatively
igh values in both dimensions. According to a lexicographic ranking,
hich favors the former dimension with respect to the latter, the second
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Fig. 3. Qualitative map to discriminate the importance classes of customers. 

Table 5 

Preference rankings related to the ten experts surveyed. 

Expert Importance class Preference ranking 

e 1 A R 1 : x 1 ≻x 3 ≻( x 2 ∼ x 5 ) ≻x 4 
e 2 B R 2 : x 2 ≻x 5 ≻( x 1 ∼ x 3 ∼ x 4 ) 
e 3 C R 3 : x 1 ≻( x 2 ∼ x 5 ) ≻x 4 ≻x 3 
e 4 B R 4 : x 5 ≻x 2 ≻x 3 ≻( x 1 ∼ x 4 ) 
e 5 C R 5 : x 5 ≻x 2 ≻( x 1 ∼ x 3 ) ≻x 4 
e 6 D R 6 : ( x 1 ∼ x 2 ) ≻x 5 ≻( x 3 ∼ x 4 ) 
e 7 A R 7 : x 1 ≻( x 2 ∼ x 3 ∼ x 5 ) ≻x 4 
e 8 D R 8 : x 3 ≻( x 1 ∼ x 2 ) ≻x 5 ≻x 4 
e 9 D R 9 : x 5 ≻( x 1 ∼ x 2 ) ≻( x 3 ∼ x 4 ) 
e 10 C R 10 : x 2 ≻x 5 ≻x 3 ≻x 1 ≻x 4 
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nd third most important classes are respectively B and C. The least
mportant customers (in class D) are those with relatively low values in
oth dimensions. 

Of course, the importance ranking could be based on additional
nd/or substitute analysis dimensions (e.g., “age of the respondents ”,
tc.) or different evaluation criteria. 

Based on the above considerations, the resulting importance ranking
f customers is: 

𝑒 1 𝑒 7 ↦ A 

𝑒 2 𝑒 4 ↦ B 

 3 𝑒 5 𝑒 10 ↦ C 

𝑒 6 𝑒 8 𝑒 9 ↦ D 

Next, the 10 customers (i.e., the experts of the problem) classify the
 interior designs (i.e., the alternatives of the problem). 

Table 5 shows the importance class of each respondent and the rel-
vant preference rankings. In general, the respondents could not be di-
ided uniformly in the importance classes. In our case study we have 2
xperts in the class A, 2 experts in the class B, and 3 experts respectively
n the classes C and D. 

We now consider the three paradigms introduced in Section 3 . 

.1. Assigning a numerical weight to each expert 

Under the approach of Subs ection 3.1 , consider the following per-
entages of importance to A, B, C and D: 40%, 35%, 15% and 10%, re-
pectively. Then, ( 𝑡 1 , 𝑡 2 , 𝑡 3 , 𝑡 4 , 𝑡 5 , 𝑡 6 , 𝑡 7 , 𝑡 8 , 𝑡 9 , 𝑡 10 ) = (8 , 7 , 3 , 7 , 3 , 2 , 8 , 2 , 2 , 3) . 
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Thus, we have the following profile: 

⎛ ⎜ ⎜ ⎜ ⎝ 

8 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 1 , … , 𝑅 1 , 

7 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 2 , … , 𝑅 2 , 

3 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 3 , … , 𝑅 3 , 

7 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 4 , … , 𝑅 4 , 

3 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 5 , … , 𝑅 5 , 

2 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 6 , … , 𝑅 6 , 

8 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 7 , … , 𝑅 7 , 

2 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 8 , … , 𝑅 8 , 

2 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 9 , … , 𝑅 9 , 

3 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 10 , … , 𝑅 10 

⎞ ⎟ ⎟ ⎟ ⎠ 
∈ 𝑊 ( 𝑋) 45 . 

If we apply the Borda rule to this profile, we obtain the scores in-

luded in Table 6 . Since 𝐵 ∗ ( 𝑥 𝑖 ) = 

∑10 
𝑘 =1 

𝑡 𝑘 ⋅ 𝐵 𝑘 ( 𝑥 𝑖 ) and 𝐵 ∗ ( 𝑥 2 ) = 122 . 5 >
 

∗ ( 𝑥 5 ) = 119 . 5 > 𝐵 ∗ ( 𝑥 1 ) = 111 > 𝐵 ∗ ( 𝑥 3 ) = 81 . 5 > 𝐵 ∗ ( 𝑥 4 ) = 15 . 5 , the final
anking of the alternatives is x 2 ≻x 5 ≻x 1 ≻x 3 ≻x 4 . 

.2. Hierarchy of experts 

As anticipated in Subsection 3.2 , we can tackle the problem in two
ays: 

1. Direct method: adopting the YA algorithm or similar variants. In this
specific case study we adopt the approach proposed by Franceschini
et al. [15,18] as a variant of the YA algorithm. The method is orga-
nized in three steps: 
(a) Construction and reorganization of the expert preference vectors.
(b) Definition of the reading sequence. 
(c) Generation of the fused ranking. 
Step (a) . Based on the different classes we have the following hier-
archy among experts: 

( 𝑒 1 ∼ 𝑒 7 ) ≻ ( 𝑒 2 ∼ 𝑒 4 ) ≻ ( 𝑒 3 ∼ 𝑒 5 ∼ 𝑒 10 ) ≻ ( 𝑒 6 ∼ 𝑒 8 ∼ 𝑒 9 ) . 

According to the four classes of importance, the preference rankings
of Table 5 are reorganized in Table 7 . Classes are strictly decreasing
in terms of importance. Each cell element originates from the level-
by-level union of the preferences related to each single expert. 
Step (b) . The second step of the method concerns the construction of
the reading sequence. The reading sequence represents the ordered
path followed by the algorithm to allocate the alternative positions
(see Table 8 ). The logic of the sequence is to read the most preferred
alternative first (Franceschini et al. [15] ). 
Step (c) . This last step generates the final fused ranking. A step-by-
step application of the Ordinal Prioritization Method is illustrated in
Table 9 . A detailed description of the method is reported in Frances-
chini et al. [15] . Data is related to the example of Tables 7 and 8 . 
The first three columns are related to the reading sequence: S is the
sequence number, j denotes the importance class selected, while the
column Element (I) is the set of alternatives taken, step by step, from
the table of the reorganized preferences ( Table 7 ). The subsequent
columns refer to the construction of the total ranking. E is the set of
alternatives included in the gradual ranking and R is the set of alter-
natives not yet included in the gradual ranking (residual elements).
We remark that an alternative is added to the total ranking only
when the number of occurrences is greater than or equal to T k (oc-
currence threshold). T k is defined by the algorithm designer. It is
worth noting that greater values of T k assign less significance to the
ranking of experts. In this case study we fix 𝑇 𝑘 = 3 for all the al-
ternatives. By this approach the final ranking of the alternatives is:
x 1 ≻( x 2 ∼ x 5 ) ≻x 3 ≻x 4 . 

2. We can generate an “artificial ” weighting vector based, for example,
on the Borda scores obtained by the experts, coming back again to
Subsection 3.1 

aking into account Eq. (1) , we have 

𝐵( 𝑒 1 ) = 𝐵( 𝑒 7 ) = 8 . 5 , 𝐵( 𝑒 2 ) = 𝐵( 𝑒 4 ) = 6 . 5 , 

𝐵( 𝑒 3 ) = 𝐵( 𝑒 5 ) = 𝐵( 𝑒 10 ) = 4 , 𝐵( 𝑒 6 ) = 𝐵( 𝑒 8 ) = 𝐵( 𝑒 9 ) = 1 . 
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Table 6 

Scores. 

Alternatives x 1 x 2 x 3 x 4 x 5 

t 1 · B 1 ( x i ) 8 ⋅ 4 = 32 8 ⋅ 1 . 5 = 12 8 ⋅ 3 = 24 8 ⋅ 0 = 0 8 ⋅ 1 . 5 = 12 
t 2 · B 2 ( x i ) 7 ⋅ 1 = 7 7 ⋅ 4 = 28 7 ⋅ 1 = 7 7 ⋅ 1 = 7 7 ⋅ 3 = 21 
t 3 · B 3 ( x i ) 3 ⋅ 4 = 12 3 ⋅ 2 . 5 = 7 . 5 3 ⋅ 0 = 0 3 ⋅ 1 = 3 3 ⋅ 2 . 5 = 7 . 5 
t 4 · B 4 ( x i ) 7 ⋅ 0 . 5 = 3 . 5 7 ⋅ 3 = 21 7 ⋅ 2 = 14 7 ⋅ 0 . 5 = 3 . 5 7 ⋅ 4 = 28 
t 5 · B 5 ( x i ) 3 ⋅ 1 . 5 = 4 . 5 3 ⋅ 3 = 9 3 ⋅ 1 . 5 = 4 . 5 3 ⋅ 0 = 0 3 ⋅ 4 = 12 
t 6 · B 6 ( x i ) 2 ⋅ 3 . 5 = 7 2 ⋅ 3 . 5 = 7 2 ⋅ 0 . 5 = 1 2 ⋅ 0 . 5 = 1 2 ⋅ 2 = 4 
t 7 · B 7 ( x i ) 8 ⋅ 4 = 32 8 ⋅ 2 = 16 8 ⋅ 2 = 16 8 ⋅ 0 = 0 8 ⋅ 2 = 16 
t 8 · B 8 ( x i ) 2 ⋅ 2 . 5 = 5 2 ⋅ 2 . 5 = 5 2 ⋅ 4 = 8 2 ⋅ 0 = 0 2 ⋅ 1 = 2 
t 9 · B 9 ( x i ) 2 ⋅ 2 . 5 = 5 2 ⋅ 2 . 5 = 5 2 ⋅ 0 . 5 = 1 2 ⋅ 0 . 5 = 1 2 ⋅ 4 = 8 
t 10 · B 10 ( x i ) 3 ⋅ 1 = 3 3 ⋅ 4 = 12 3 ⋅ 2 = 6 3 ⋅ 0 = 0 3 ⋅ 3 = 9 ∑10 

𝑘 =1 
𝑡 𝑘 ⋅ 𝐵 𝑘 ( 𝑥 𝑖 ) 111 122.5 81.5 15.5 119.5 

Table 7 

Reorganized preferences according to the four classes of experts. 

Importance class A B C D 
Experts { e 1 , e 7 } { e 2 , e 4 } { e 3 , e 5 , e 10 } { e 6 , e 8 , e 9 } 

Reorganized x 1 x 1 x 2 x 5 x 1 x 2 x 5 x 1 x 2 x 3 x 5 
preferences x 2 x 2 x 3 x 5 x 2 x 5 x 2 x 2 x 5 x 5 x 1 x 1 x 2 x 2 x 5 

x 2 x 4 x 5 x 1 x 3 x 3 x 4 x 1 x 3 x 3 x 4 x 3 x 3 x 4 x 4 x 5 
x 4 x 1 x 4 x 1 x 3 x 4 x 4 

x 4 

Table 8 

Reading sequence number ( S ) related to the reorganized vectors in 
Table 7 . 

Importance class A B C D 
Experts { e 1 , e 7 } { e 2 , e 4 } { e 3 , e 5 , e 10 } { e 6 , e 8 , e 9 } 

1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15 16 
17 18 19 20 

H  

𝑡
 

s  

r

l1 l2 l3 l4

Fig. 4. Ordinal proximity measure with associated matrix A 323 . 
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ence, 𝑡 1 = 𝑡 7 = 17 , 𝑡 2 = 𝑡 4 = 13 , 𝑡 3 = 𝑡 5 = 𝑡 10 = 8 , 𝑡 6 = 𝑡 8 =
 9 = 2 . Consequently, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10

hould be replicated 17, 13, 8, 13, 8, 2, 17, 2, 2 and 8 times,
espectively. 

Then, we have the following profile: 

⎛ ⎜ ⎜ ⎜ ⎝ 

17 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 1 , … , 𝑅 1 , 

13 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 2 , … , 𝑅 2 , 

8 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 3 , … , 𝑅 3 , 

13 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 4 , … , 𝑅 4 , 

8 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 5 , … , 𝑅 5 , 

2 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 6 , … , 𝑅 6 , 
Table 9 

Step-by-step application of the Ordinal Prioritization Method 

S j Element ( I ) E Ocurrencies ( O k ) 

x 1 x 2 x 3 

0 
1 A { x 1 , x 1 } 2 0 0 
2 B { x 2 , x 5 } 2 1 0 
3 C { x 1 , x 2 , x 5 } { x 1 } 3 2 0 
4 D { x 1 , x 2 , x 3 , x 5 } { x 2 , x 5 } 4 3 1 
5 A { x 2 , x 2 , x 3 , x 5 } 4 5 2 
6 B { x 2 , x 5 } 4 6 2 
7 C { x 2 , x 2 , x 5 , x 5 } 4 8 2 
8 D { x 1 , x 1 , x 2 , x 2 , x 5 } 6 10 2 
9 A { x 2 , x 4 , x 5 } 6 11 2 
10 B { x 1 , x 3 , x 3 , x 4 } { x 3 } 7 11 4 
11 C { x 1 , x 3 , x 3 , x 4 } { x 4 } 8 11 6 
End 
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17 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 7 , … , 𝑅 7 , 

2 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 8 , … , 𝑅 8 , 

2 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 9 , … , 𝑅 9 , 

8 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 10 , … , 𝑅 10 

⎞ ⎟ ⎟ ⎟ ⎠ 
∈ 𝑊 ( 𝑋) 90 . 

If we apply the Borda rule to this profile, we obtain the following
otal scores for x 1 , x 2 , x 3 , x 4 and x 5 , respectively: 224.5, 243.5,
62, 29.5 and 240.5. Then, the final ranking of the alternatives is
 2 ≻x 5 ≻x 1 ≻x 3 ≻x 4 . 

.3. Ordinal proximity measures 

Under the approach of Subsection 3.3 , we will consider three dif-
erent OPMs. Once the number of replications of each weak order are
btained, following the procedure illustrated in Example 3 , we apply
he Borda rule to the corresponding profiles. 

a) With the OPM with associated proximity matrix 

𝐴 323 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝛿1 𝛿3 𝛿4 𝛿5 
𝛿1 𝛿2 𝛿4 

𝛿1 𝛿3 
𝛿1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

that can be visualized in Fig. 4 , the final ranking of the alternatives
is: x 1 ≻x 2 ≻x 5 ≻x 3 ≻x 4 . 
(Franceschini et al. [15] ). 

Residual elements ( R ) Gradual ranking 

x 4 x 5 

{ x 1 , x 2 , x 3 , x 4 , x 5 } 
0 0 { x 1 , x 2 , x 3 , x 4 , x 5 } 
0 1 { x 1 , x 2 , x 3 , x 4 , x 5 } 
0 2 { x 2 , x 3 , x 4 , x 5 } x 1 
0 3 { x 3 , x 4 } x 1 ≻( x 2 ∼ x 5 ) 
0 4 { x 3 , x 4 } x 1 ≻( x 2 ∼ x 5 ) 
0 5 { x 3 , x 4 } x 1 ≻( x 2 ∼ x 5 ) 
0 7 { x 3 , x 4 } x 1 ≻( x 2 ∼ x 5 ) 
0 8 { x 3 , x 4 } x 1 ≻( x 2 ∼ x 5 ) 
1 9 { x 3 , x 4 } x 1 ≻( x 2 ∼ x 5 ) 
2 9 { x 4 } x 1 ≻( x 2 ∼ x 5 ) ≻x 3 
3 9 x 1 ≻( x 2 ∼ x 5 ) ≻x 3 ≻x 4 
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l1 l2 l3 l4

Fig. 5. Ordinal proximity measure with associated matrix A 423 . 

Table 10 

Summary. 

Approach Case study Subcase Preference ranking 
Subsection Subsection 

3.1 4.1 x 2 ≻x 5 ≻x 1 ≻x 3 ≻x 4 
3.2 4.2 1 x 1 ≻( x 2 ∼ x 5 ) ≻x 3 ≻x 4 
3.2 4.2 2 x 2 ≻x 5 ≻x 1 ≻x 3 ≻x 4 
3.3 4.3 A 323 x 1 ≻x 2 ≻x 5 ≻x 3 ≻x 4 
3.3 4.3 A 232 x 2 ≻x 5 ≻x 1 ≻x 3 ≻x 4 
3.3 4.3 A 423 x 1 ≻x 2 ≻x 5 ≻x 3 ≻x 4 
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b) With the OPM with associated proximity matrix 

𝐴 232 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝛿1 𝛿2 𝛿4 𝛿5 
𝛿1 𝛿3 𝛿4 

𝛿1 𝛿2 
𝛿1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

that can be visualized in Fig. 2 , the final ranking of the alternatives
is: x 2 ≻x 5 ≻x 1 ≻x 3 ≻x 4 . 

c) With the OPM with associated proximity matrix 

𝐴 423 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝛿1 𝛿4 𝛿6 𝛿7 
𝛿1 𝛿2 𝛿5 

𝛿1 𝛿3 
𝛿1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

that can be visualized in Fig. 5 , the final ranking of the alternatives
is: x 1 ≻x 2 ≻x 5 ≻x 3 ≻x 4 . 

Taking into account the opinions of the ten customers on the five in-
erior designs of a new car included in Table 5 , the outcomes obtained
nder the approaches introduced in Subsections 3.1, 3.2 and 3.3 , devel-
ped for the case study in Subsections 4.1, 4.2 and 4.3 , respectively, are
ummarized in Table 10 . 

The winner is x 1 or x 2 , depending on the case, but when x 2 is the
inner, x 1 is always in the third position. The fourth and the fifth posi-

ions are always for x 3 and x 4 , respectively. 
Taking into account the six cases considered, x 1 , x 2 , x 3 , x 4 and x 5 

ave average positions 2, 1.58, 3, 4 and 2.42, respectively. Thus, on
verage, the final ranking is x 2 ≻x 1 ≻x 5 ≻x 3 ≻x 4 , that it does not coincide
ith any of the outcomes obtained in the six cases. Notice that this

anking is the same than the one obtained when applying the Borda rule
o the six preference rankings of Table 10 . This is due to the fact that the
orda rule ranks the alternatives according to their average positions. 

. Conclusions 

The proposed method allow to aggregate multi-experts rankings of
ifferent alternatives into a single fused ranking according to different
emi-democratic paradigms: (i) the importance of experts is directly re-
orted by means of a weighing vector; (ii) the importance of experts is
xpressed by a weak order on the set of expert; (iii) the importance of
xperts is described by a weak order with ordinal proximity measures
n the set of expert. The three paradigms can be applied in different
ecision-making situations, where some experts perform multiple as-
ignments. 

The results obtained in the case study highlight the following aspects:

• Different methods lead to different rankings of the alternatives, even
if sometimes they appear to coincide. 

• There is a general agreement between the methods for top and bot-
tom positions in the rankings. 
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• The use of one method or another depends on the quality of informa-
tion available from the different semi-democratic decision making
contexts. 

It is important to mention some advantages of the methods proposed
n this paper with respect to other proposals: 

• Their simplicity and the greater adherence of data properties to real
situations. 

• Weights are treated in a purely ordinal way by replicating experts’
opinions according to the proportions between weights. 

• The use of minimal structures for representing hierarchies on the
set of experts (weak orders and ordinal proximity measures). For
instance, taking a particular membership function is a much stronger
hypothesis than considering a weak order between experts. 

The main contribution of this paper is to provide a general overview
f the state-of-art of the methods able to tackle decision-making prob-
ems in semi-democratic contexts. In our analysis it was assumed that
he preference rankings of experts are complete; i.e., all experts are able
o rank all the alternatives of interest, without omitting any of them. The
nalysis does not consider the (possible) uncertainty in expert rankings,
nd/or preference rankings with incomparability between some alter-
atives. 

Regarding the future, we plan to extend the analysis to situations
here experts are not able to provide complete weak rankings, but only
artial preference rankings, uncertainty rankings or even rankings with
ome forms of incomparability between alternatives to be evaluated. 
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